В синтетическом периоде клеточного цикла происходит, интерфаза клетки

Жизненный цикл клетки: фазы, периоды. Жизненный цикл вируса в клетке хозяина

Жизненный цикл клетки включает начало ее образования и конец существования в качестве самостоятельной единицы. Начнем с того, что клетка появляется в ходе деления ее материнской клетки, а заканчивает свое существование по причине следующего деления либо гибели.

Жизненный цикл клетки состоит из интерфазы и митоза. Именно в этом рассматриваемый период равнозначен клеточному.

Жизненный цикл клетки: интерфаза

Это период между двумя митотическими клеточными делениями. Воспроизведение хромосом протекает сходно с редупликацией (полуконсервативной репликацией) молекул ДНК. В интерфазе ядро клетки окружено особой двухмембранной оболочкой, а хромосомы раскручены, и при обычном световом микроскопировании незаметны.

При окрашивании и фиксации клеток происходит скопление сильно окрашенного вещества — хроматина. Стоит отметить, что цитоплазма содержит все требуемые органоиды. Это обеспечивает полноценное существование клетки.

В жизненном цикле клетки интерфаза сопровождается тремя периодами. Рассмотрим каждый из них поподробнее.

Периоды жизненного цикла клетки (интерфазы)

Первый из них называется пересинтетическим. Результат предшествующего митоза – рост числа клеток. Здесь протекает транскрипция новоиспеченных молекул РНК (информационной), а также систематизируются молекулы остальных РНК, в ядре и цитоплазме синтезируются белки. Некоторые вещества цитоплазмы постепенно расщепляются с формированием АТФ, ее молекулы наделены макроэргическими связями, они переносят энергию туда, где ее недостаточно. При этом клетка увеличивается, по размерам она достигает материнской. Данный период длится долго у специализированных клеток, на его протяжении они осуществляют свои особые функции.

Второй период известен как синтетический (синтез ДНК). Его блокада может привести к остановке всего цикла. Здесь протекает репликация молекул ДНК, а также синтез белков, которые участвуют в формировании хромосом.

ДНК-молекулы начинают связываться с белковыми, в результате чего хромосомы утолщаются. Одновременно с этим наблюдается репродукция центриолей, в итоге их появляется 2 пары. Новая центриоль во всех парах размещается относительно старой под углом в 90°. Впоследствии каждая пара в период следующего митоза отодвигается к клеточным полюсам.

Синтетический период характеризуется как повышенным ДНК-синтезом, так и резким скачком формирования молекул РНК, а также белков в клетки.

Третий период – постсинтетический. Он характеризуется наличием подготовки клетки к последующему делению (митотическому). Длится данный период, как правило, всегда меньше других. Иногда он вообще выпадает.

Продолжительность генерационного времени

Иначе говоря, это то, сколько длится жизненный цикл клетки. Продолжительность генерационного времени, а также отдельно взятых периодов принимает разные значения у различных клеток. Это можно увидеть из таблицы ниже.

Тип популяции клетки

пресинтетический период интерфазы

синтетический период интерфазы

постсинтетический период интерфазы

клетки печени 3-недельного животного

Итак, самый короткий жизненный цикл клетки – у камбиальных. Бывает, что совсем выпадает третий период – постсинтетический. К примеру, у 3-недельной крысы в клетках ее печени он уменьшается до получаса, продолжительность генерационного времени при этом составляет 21,5 ч. Длительность же синтетического периода — самая стабильная.

В остальных ситуациях в первом периоде (пресинтетическом) клетка накапливает свойства для осуществления специфических функций, это связано с тем, что ее строение становится более сложным. В случае если специализация слишком далеко не зашла, она может пройти полный жизненный цикл клетки с образованием 2-х новых в митозе клеток. В этой ситуации первый период может существенно увеличиться. К примеру, в клетках кожного эпителия мыши генерационное время, а именно 585,6 часов, приходится на первый период – пресинтетический, а в клетках периоста детеныша крысы – 102 часа из 114.

Главная часть данного времени именуется G0-периодом – это осуществление интенсивной специфической функции клетки. Многие клетки печени пребывают в таком периоде, ввиду чего они потеряли свою способность к митозу.

В случае если будет удалена часть печени, большинство ее клеток перейдут к полному проживанию сначала синтетического, затем постсинтетического периода, в конце – митотического процесса. Итак, для разного рода клеточных популяций уже доказана обратимость такого G0-периода. В остальных ситуациях степень специализации так сильно увеличивается, что при типичных условиях клетки не могут уже делиться митотически. Изредка в них протекает эндорепродукция. В некоторых она повторяется не один раз, хромосомы утолщаются настолько, что их можно увидеть в обычный световой микроскоп.

Таким образом, мы узнали, что в жизненном цикле клетки интерфаза сопровождается тремя периодами: пресинтетическим, синтетическим и постсинтетическим.

Деление клеток

Оно лежит в основе размножения, регенерации, передачи наследственной информации, развития. Сама по себе клетка существует лишь в промежуточном периоде между делениями.

Жизненный цикл (деление клетки) – период существования рассматриваемой единицы (начинается с момента ее появления посредством деления клетки материнской), в том числе и само деление. Заканчивается собственным делением либо гибелью.

Фазы клеточного цикла

Их всего шесть. Известны следующие фазы жизненного цикла клетки:

  1. Деление. Здесь протекает митотическое деление.
  2. Рост. После деления клетка увеличивается в объеме. Она достигает определенных размеров.
  3. Покой. В это время дальнейшая судьба еще не определена: клетка готовится либо к делению, либо к специализации.
  4. Дифференциация. По окончании фазы роста клетка приобретает соответствующие структурные, функциональные особенности.
  5. Зрелость. Клетка выполняет определенные функции, исходя из ее специализации.
  6. Старение. Ослабление клеточных жизненных функций. Далее – либо деление, либо гибель.

Длительность жизненного цикла, а также число фаз в нем у каждой клетки свое. Так, в нервной ткани клетки по завершении начального эмбрионального периода прекращают делиться, затем только функционируют в течение всей жизни самого организма, а впоследствии погибают. А вот клетки зародыша в стадии дробления сначала завершают 1 деление, а затем сразу, минуя остальные фазы, приступают к следующему.

Способы деления клетки

  1. Митоз – это непрямое деление клеток.
  2. Мейоз – это характерное для такой фазы, как созревание половых клеток, деление.

Теперь подробнее узнаем, что представляет собой жизненный цикл клетки – митоз.

Непрямое деление клеток

Митоз представляет собой непрямое деление именно соматических клеток. Это непрерывный процесс, результат которого – сначала удвоение, затем одинаковое распределение между дочерними клетками наследственного материала.

Биологическое значение непрямого деления клеток

Оно заключается в следующем:

1. Результат митоза – образование двух клеток, каждая содержит такое же количество хромосом, как и материнская. Их хромосомы образуются посредством точной репликации материнского ДНК, ввиду чего гены дочерних клеток включают идентичную наследственную информацию. Они генетически одинаковые с родительской клеткой. Итак, можно сказать, что митоз обеспечивает идентичность передачи наследственной информации дочерним клеткам от материнской.

2. Итогом митозов является определенное количество клеток в соответствующем организме – это один из важнейших механизмов роста.

3. Большое число животных, растений размножается именно бесполым путем посредством митотического клеточного деления, поэтому митоз составляет основу вегетативного размножения.

4. Именно митоз обеспечивает полную регенерацию потерянных частей, а также замещение клеток, которое протекает в определенной степени у любых многоклеточных организмов.

Таким образом, стало известно, что жизненный цикл соматической клетки состоит из митоза и интерфазы.

Механизм митоза

Деление цитоплазмы и ядра – 2 самостоятельных процесса, которые протекают непрерывно, последовательно. Но в целях удобства изучения происходящих в период деления событий он искусственно разграничивается на 4 стадии: про-, мета-, ана-, телофазу. Их продолжительность различна в зависимости от типа ткани, внешних факторов, физиологического состояния. Самыми продолжительными выступают первая и последняя.

Профаза

Здесь наблюдается заметное увеличение ядра. В итоге спирализации происходит уплотнение, укорачивание хромосом. В более поздней профазе уже хорошо видна структура хромосом: 2 хроматиды, которые соединены центромерой. Начинается передвижение хромосом к экватору клетки.

Из цитоплазменного материала в профазе (поздней) образовывается веретено деления, которое формируется при участии центриолей (в животных клетках, у ряда низших растений) или без них (клетки некоторых простейших, высших растений). Впоследствии от центриолей начинают появляться 2-типовые нити веретена, точнее:

  • опорные, которые соединяют клеточные полюса;
  • хромосомные (тянущие), которые перекрещиваются в метафазе к хромосомным центромерам.

В завершении данной фазы исчезает ядерная оболочка, а хромосомы располагаются свободно в цитоплазме. Обычно ядро пропадает немного раньше.

Метафаза

Ее начало – исчезновение ядерной оболочки. Хромосомы сперва выстраиваются в экваторной плоскости, образуя метафазную пластинку. При этом хромосомные центромеры строго располагаются в экваторной плоскости. Нити веретена присоединяются к хромосомным центромерам, а некоторые из них проходят от одного полюса к другому, не прикрепляясь.

Анафаза

Ее началом считается деление центромер хромосом. В итоге хроматиды трансформируются в две обособленные дочерние хромосомы. Далее последние начинают расходится к клеточным полюсам. Они, как правило, в это время принимают особую V-образную форму. Такое расхождение осуществляется посредством ускорения нитей веретена. В то же время протекает удлинение опорных нитей, итогом чего становится отдаление полюсов друг от друга.

Телофаза

Здесь хромосомы собираются на клеточных полюсах, затем диспирализуются. Далее происходит разрушение веретена деления. Вокруг хромосом образуется ядерная оболочка дочерних клеток. Так завершается кариокинез, впоследствии осуществляется цитокинез.

Механизмы попадания вируса в клетку

1. При помощи слияния вирусного суперкапсида и мембраны клетки. В результате этого высвобождается нуклеокапсид в цитоплазму. Впоследствии наблюдается реализация свойств генома вируса.

2. Посредством пиноцитоза (рецепторопосредованного эндоцитоза). Здесь происходит связывание вируса в месте окаймленной ямки с рецепторами (специфическими). Последняя впячивается внутрь клетки, а затем трансформируется в так называемый окаймленный пузырек. Он, в свою очередь, содержит поглощенный вирион, сливается с временным промежуточным пузырьком, который называется эндосомой.

Внутриклеточное размножение вируса

После проникновения в клетку геном вируса целиком подчиняет ее жизнь собственным интересам. Посредством белоксинтезирующей системы клетки и ее систем генераций энергии он воплощает собственное воспроизводство, жертвуя, как правило, жизнью клетки.

На рисунке ниже представлен жизненный цикл вируса в клетке хозяина (леса Семлики – представитель рода Alphvirus). Его геном представлен однонитевой позитивной нефрагментированной РНК. Там вирион оснащен суперкапсидом, который состоит из липидного бислоя. Посредством него проходит порядка 240 копий ряда гликопротеиновых комплексов. Вирусный жизненный цикл начинается с абсорбции его на мембране хозяйской клетки, там он соединяется с рецептором белка. Проникновение в клетку осуществляется посредством пиноцитоза.

Заключение

В статье был рассмотрен жизненный цикл клетки, описаны его фазы. Подробно рассказано о каждом периоде интерфазы.

Жизненный цикл клетки: пресинтетическая, синтетическая, постсинтетическая стадии, митоз.

Клеточный цикл эукариот.Клетка характеризуется разной способностью к делению. У многоклеточных есть клетки, которые потеряли способность к делению. Чаще всего это специализированные дифференцированные клетки. Клетки ЦНС, кардиомиоцита, хрусталика глаза. И в организме есть постоянно обновляющиеся клетки. Это кровь, эпителиальные ткани. В таких тканях существует часть клеток, которые заменяют отработавшие или погибающие клетки. Клетки базального слоя покровного эпителия, клетки крипт кишечника, кроветворные клетки костного мозга и т.п. Последовательность событий, происходящих между образованием данной клетки и ее собственным делением на дочерние называют клеточным или жизненным циклом. Этот цикл однонаправленный процесс. Клетка последовательно проходит разные его периоды без их пропуска или возврата к предыдущим стадиям и, вступив в клеточный цикл, клетка заканчивает его синтезом ДНК и образованием новой клетки. Весь клеточный цикл состоит как бы из четырех временных отрезков: Собственно митоз Пресинтетический период (G1),синтетический (S) и постсинтетический (G2).Периоды его стадий очень сильно варьируют как у разных организмов, так и у клеток разной формы одного организма.

Самым главным является синтетический период. В это время происходит синтез ДНК. Весь синтез ДНК протекает за счет независимого синтеза на множестве отдельных леприконов. Биологический смысл этого становится понятным, когда мы сравниваем синтез ДНК прокариот и эукариот. А именно, бактериальный нуклеоид монолепрекон. Длина примерно в 1600 мкм. Если бы сантиметровая молекула хромосомы млекопитающих также как и монолепреконовая структура увеличивала численностью свою, то на это бы ушло около шести суток. Но если в такой хромосоме расположено несколько сот леприконов, то для полной ее репликации требуется только один час.

В некоторых случаях включаются дополнительные репликоны или появляются новые точки репликации, что дает возможность закончить синтез за минимально короткое время. У Дрозофилы на ранних стадиях весь синтез занимает 3 с половиной минуты, а в клетках взрослой ткани уже 600 минут. В клетках взрослых кол-во репликонов больше.

Синтез ДНК по длине отдельной хромосомы происходит асинхронно, т.е. неравномерно. В индивидуальной хромосоме активные репликоны собраны в группы, которые называются репликативной единицей, включающей в себя от 10 до 80 точек начала репликации. Каждая хромосома характеризуется высокой стабильностью порядка репликации по своей длине и временными параметрами. Репликативные единицы вместе с белками ядерного матрикса и ферментами репликации образуют особые зоны, которые называются кластеросомы, т.е. зоны, на которых идет синтез ДНК. Порядок определяется структурой хроматина в этом участке. Например, зоны конститутивного гетерохроматина реплицируются обычно в конце S периода. При этом существует строгая детерминированная последовательность. Весь синтез ДНК протекает за счет независимого синтеза на множестве отдельных репликонов, что сокращает время репликации.

G1 – это отрезок времени, предшествующий началу синтеза ДНК. Характеризуется преимущественным ростом цитоплазмы. Этот период наиболее длителен у подавляющего большинства живых организмов. Варьирует от 10 часов до нескольких суток. Но в этот период G1 происходят закономерно следующие процессы – образование митохондрий и хлоропластов, ЭПР, лизосом, комплекса Гольджи, вакуолей, секреторных пузырьков и т.д. Ядро синтезирует все типы РНК. Образуются субъединицы рибосом. В цитоплазме собираются полные работающие рибосомы. Синтезируются структурные и функциональные белки. Наблюдается интенсивный клеточные метаболизм. Клетка растет, увеличивается в размерах. Образуется в результате химических реакций вещества, которые либо подавляют, либо стимулируют все остальные стадии клеточного цикла. И если происходит в клетке переход к следующей стадии S, такую интерфазу называют автосинтетической. Если же в клетке синтез различных веществ происходит, а синтез ДНК отсутствует, то такая интерфаза называется гетеросинтетической. и такой выходы клетки из цикла обозначается стадией G . Так называемый период покоя. Это фаза принятия решения и через какое-то время такие клетки могут вновь вернуться, но чаще всего в многоклеточных организмах такие клетки теряют способность к размножению.

G – фаза принятия решения. Будет ли клетка размножаться. Это комплекс факторов роста, которые побуждают клетки к размножению. Это могут быть или собственные продукты данных клеток и тогда мы имеем дело с аутокринной стимуляцией. Или продукты других соседних клеток, тогда мы имеем дело с паракринной стимуляцией или даже могут быть продукты клеток других органов – гормональная стимуляция. Это разные факторы роста взаимодействуют на поверхности клеток со своими рецепторами и передают сигнал на систему многоклеточного каскада. Механизм универсальный.

Постсинтетический период G2. Он характеризуется разрастанием и ядра и цитоплазмы. Вновь отличаются интенсивные процессы биосинтеза, деление митохондрий, хлоропластов, формируются все необходимые компоненты для образования веретена деления.

Особо следует отметить синтез белка. Серинтреонин-протеинкиназа – фактор созревания, который является ферментом, катализирующем фосфолирирование белков. Протеин-киназа активируется незадолго до конца фазы G2 и это служит сигналом перехода клетки к митозу. Под контролем этого фермента находятся три процесса: 1) фосфолирирование белков ламины. В результате ламина деполимеризуется и при этом разрушается ядерная оболочка. 2) Фосфолирируются белки, взаимодействующие с микротрубочками при образования веретена деления. 3) фосфолирируются гистон Н1

Другой термин, который более отражает суть процесса – кариокинез. Или непрямое деление. Это единственный способ увеличения с полноценным распределением. Выделяют несколько типов митоза – наиболее простой тип митоза – плевромитоз, который подразделяется на несколько видов. Закрытый. Расхождение происходит без нарушения ядерной оболочки. В качестве центров организации участвуют структуры, находящиеся на внутренней стороне ядерной мембраны. Полярные тельца, от которых отходят микротрубочки. Этих телец два, они расходятся друг от друга не теряя связи с ядерной оболочки и в результате этого образуются два полуверетена, связанные с хромосомами. Весь процесс образования митотического аппарата и расхождения хромосом происходит внутри ядерной оболочки такой тип митоза широко распространен у грибов. А у простейших встречается другая форма плевромитоза – полузакрытый, когда после формирования веретена ядерная оболочка частично разрушается.

Другая форма митоза – ортомитоз. В этом случае ЦОМТы располагаются в цитоплазме и идет образование не полуверетен, а двух полюсных веретен. Ортомитоз делится на три вида: открытый, полузакрытый и закрытый. При полузакрытом ортомитозе образуется бисиметричное веретено с помощью расположенных в цитоплазме ЦОМТов ядерная оболочка сохраняется за исключением полярных ЦОМТов. Такая форма митоза характерна для зеленых водорослей, грегарин. При закрытом ортомитозе полностью сохраняется ядерная оболочка. Под ней образуется настоящее веретено. Микротрубочки формируются в кариоплазме. Такой тип характерен для микронуклеусов инфузорий. При открытом ортомитозе ядерная оболочка полностью распадается, содержимое ядра кариоплазмы смешивается с гиалоплазмой и формируется единая внутренняя среда, которая называется миксоплазма. Такой тип деления характерен для высших растений, большинства животных клеток и есть у некоторых растений. Эта форма митоза представлена двумя типами: астральным и анастральным типами. Астральный тип веретена или конвергентный характеризуется тем, что его полюса представлены небольшой долей, которые сходятся в микротрубочке. В полюсах астральных веретен располагаются центросомы, содержащие центриоли. От полюсов расходятся радиальные микротрубочки, образующие звездчатые структуры, которые называются цистостеры. Анастральный тип никогда не имеет на полюсах цитостер. Полярные области веретена здесь широкие, их называют полярными шапочками. Волокна веретена в данном случае не отходят от одной точки, а расходятся широким фронтом, как бы дивергируют.

Для делящихся клеток высших растений характерен такой тип митотического деления.

Для образования веретена деления для всех эукариот принимают участие два рода структур – полярные тельца или полюса веретена и кинетохоры хромосом.

Центросомы (полярные тельца) являются центрами организации. От них своими положительными концами отрастают микротрубочки, образующие пучки и тянущиеся к хромосоме. Как правило, при организации аппарата деления участвуют две центросомы или два полярных тельца, находящиеся на противоположных концах клетки. У многих эукариот центриолей нет, а центры организации микротрубочек присутствуют в виде бесструктурных аморфных зон, от которых отходят многочисленные микротрубочки.

Какие процессы происходят в клетке в интерфазе

Обычно интерфаза занимает не меньше 90% времени всего клеточного цикла. Например, у быстро делящихся клеток высших эукариот последовательные деления происходят один раз в 16-24 часа, и каждая фаза М длится 1-2 часа. Большая часть компонентов клетки синтезируется на протяжении всей интерфазы, это затрудняет выделение в ней отдельных стадий ( Pardee, 1978 ; Yanishevsky, 1981 ). Однако в интерфазе выделяют фазу G< l1>l, фазу S и фазу G< l2>l. Период интерфазы, когда происходит репликация ДНК клеточного ядра, был назван «фаза S » (от слова synthesis).

Период между фазой М и началом фазы S обозначен как фаза Gl (от слова gap — промежуток) , а период между концом фазы S и последующей фазой М — как фаза G< l2>l. Во время Gl-фазы возобновляются интенсивные биосинтетические процессы, резко замедленные во время клеточного деления.

После прохождения точки рестрикции R в поздней Gl-фазе клетки переходят в S-фазу — фазу ДНК синтеза ( Robbins, 1968 ; Vorobjev, 1982 ; Hartwell, 1981 ; Byers, 1981 ; Huberman, 1968 ; Hand, 1978 ).

Фаза G< l2>l нужна для подготовки клеток к митозу ( Johnson, 1970; ; Bradbury, 1974 ; Isenberg, 1979 ) . См. далее Клетка: фаза Gl

Длительность митотического цикла варьирует у разных организмов в широких пределах. Самые короткие клеточные циклы обнаружены у дробящихся яиц некоторых животных. Например, у золотой рыбки первые деления дробления совершаются через 20 мин (подробнее об этом в разделе индивидуальное развитие ). Довольно распространены митотические циклы длительностью 18-20 ч. Встречаются циклы, которые продолжаются несколько суток. Время от деления до деления клеток может значительно отличаться в пределах одного и того же организма. Так, при изучении длительности клеточных циклов эпителиальных клеток мыши выяснилось, что в двенадцатиперстной кишке эпителиальные клетки делятся каждые 11 ч, в тощей кишке — примерно через 19 ч, в роговице глаза — через 3 суток, а в кожном эпителии от деления до деления проходит больше 24 суток. Время, которое клетка тратит непосредственно на деление, составляет обычно 1-3 ч (эмбриональные митозы много короче) . Таким образом, основную часть жизни клетки находятся в интерфазе. Название этой стадии возникло еще в прошлом веке, когда о деятельности клеток могли судить только по изменениям их морфологии, так как единственным инструментом исследования был световой микроскоп. Поскольку заметные морфологические изменения клеток происходили во время деления, то к ним и было приковано внимание биологов, а период между делениями получил название промежуточного (лат. inter — между) или фазы покоя. Благодаря появлению современных методов изучения клетки — электронной микроскопии, авторадиографии, возможности измерять содержание различных внутриклеточных веществ — удалось установить, что в интерфазе происходят важнейшие события клеточной жизни, в частности удвоение хромосом.

Обычно интерфазу подразделяют на три периода: пресинтетический, синтетический и постсинтетический. Пресинтетический (Gi) период (англ. gap — интервал) следует непосредственно за делением. Как правило, это самый длительный период интерфазы ( рис. 61 ). В клетках эукариот он продолжается от 10 ч до нескольких суток. Во время него происходит подготовка клетки к удвоению хромосом: синтезируется РНК, образуются различные белки, в частности необходимые для образования предшественников ДНК. При этом увеличивается количество рибосом и поверхность шероховатой эндоплазматической сети, растет число митохондрий. Все это приводит к тому, что клетка интенсивно растет. В синтетическом (S) периоде продолжается синтез РНК и белков и одновременно происходит удвоение хромосом, в основе которого лежит процесс репликации ДНК .

Источники:

http://www.syl.ru/article/199850/new_jiznennyiy-tsikl-kletki-fazyi-periodyi-jiznennyiy-tsikl-virusa-v-kletke-hozyaina
http://studopedia.ru/20_13658_zhiznenniy-tsikl-kletki-presinteticheskaya-sinteticheskaya-postsinteticheskaya-stadii-mitoz.html
http://otvet.mail.ru/question/25732681

Читать еще:  Лучшие сорта ремонтантной клубники для урала
Ссылка на основную публикацию
Статьи на тему:

Adblock
detector