Генетический аппарат вируса содержится в
Что мы знаем о вирусах и методах защиты от них?
Что такое вирус?
Как устроен вирус?
В центре агента находится генетический материал РНК или ДНК, вокруг которого располагается белковая структура — капсид.
Капсид служит для защиты вируса и помогает при захвате клетки. Некоторые вирусы дополнительно покрыты липидной оболочкой, т.е. жировой структурой, которая защищает их от изменений окружающей среды.
Вирусолог Дэвид Балтимор объединил все вирусы в 8 групп, из которых некоторые группы вирусов содержат 1-2 цепочки ДНК. Другие же содержат 1 цепочку РНК, которая может удваиваться или достраивать на своей матрице ДНК. При этом каждая группа вирусов производит себя в различных органеллах зараженной клетки.
Вирусы имеют определенный диапазон хозяев, т.е. он может быть опасен для одних видов и абсолютно безвреден для других. Например, оспой болеет только человек, а чумкой только некоторые виды плотоядных. Вирус не способен выжить сам по себе, поэтому активируется только в хозяйской клетке, используя ее ресурсы и питательные вещества. Цель вируса — создание множества копий себя, чтобы инфицировать другие клетки!
Вирусы. Цикл развития бактериофага. Скачать наглядное пособие в большом разрешении можно здесь.
Как вирус попадает в организм?
Геном вируса встраивается в одну из органелл или цитоплазму и превращает клетку в настоящий вирусный завод. Естественные процессы в клетке нарушаются, и она начинает заниматься производством и сбором белка вируса. Этот процесс называется репликацией. И его основная цель — это захват территории. Во время репликации генетический материал вируса смешивается с генами клетки хозяина — это приводит к активной мутации самого вируса, а также повышает его выживаемость. Когда процесс репликации налажен, вирусная частица отпочковывается и заражает уже новые клетки, в то время как инфицированная ранее клетка продолжает производство.
«Для проникновения в клетку белки поверхности вируса связываются со специфическими поверхностными белками клетки. Прикрепление, или адсорбция, происходит между вирусной частицей и клеточной мембраной. В мембране образуется дырка, и вирусная частица или только генетический материал попадают внутрь клетки, где будет происходить размножение вируса. Сегодня ученые всего мира сделали важное открытие о том, что заражение коронавирусом людей преклонного возраста объясняется тем, что у пожилых людей накапливается специфический белок, который помогает COVID-19 проникать внутрь клетки эпителия».
Выход вируса
Скорость распространения вирусной инфекции
Вирусная латентность
Как вирус распространяется?
Почему с вирусами так тяжело бороться?
Эволюция вирусов происходит буквально на наших глазах. Идет постоянная гонка между вирусами и живыми организмами. Эпидемии сопровождали человека с древних времён. Миллионы людей на различных континентах погибли от оспы и «испанского гриппа». Эпидемии этих болезней иногда были настолько опустошительными, что в некоторых городах, сёлах и деревнях умирало почти всё население. А когда вирус изобретает новое оружие — возникает пандемия.
Сегодня людям уже удалось победить некоторые вирусы, а некоторые взять под жесткий контроль. Например, Оспа (она же черная оспа). Болезнь вызывается вирусом натуральной оспы, передается от человека к человеку воздушно-капельным путем. Больные покрываются сыпью, переходящей в язвы, как на коже, так и на слизистых внутренних органов. Смертность, в зависимости от штамма вируса, составляет от 10 до 40 (иногда даже 70%), На сегодняшний день вирус полностью истреблен человечеством.
Кроме того, взяты под контроль такие заболевания, как бешенство, корь и полиомиелит. Но помимо этих вирусов существует масса других, которые требуют разработок или открытия новых вакцин.
Коронавирус
К наиболее распространенным симптомам COVID-19 относятся повышение температуры тела, сухой кашель и утомляемость. К более редким симптомам относятся боли в суставах и мышцах, заложенность носа, головная боль, конъюнктивит, боль в горле, диарея, потеря вкусовых ощущений или обоняния, сыпь и изменение цвета кожи на пальцах рук и ног. Как правило, эти симптомы развиваются постепенно и носят слабо выраженный характер. У некоторых инфицированных лиц болезнь сопровождается очень легкими симптомами.
Поскольку пока не изобретено вакцины от COVID-19, в целях защиты от инфекции самым важным для нас является соблюдение гигиены.
Гигиена — раздел медицины, изучающий влияние жизни и труда на здоровье человека и разрабатывающая меры (санитарные нормы и правила), направленные на предупреждение заболеваний, обеспечение оптимальных условий существования, укрепление здоровья и продление жизни.
Сегодня следует соблюдать определенные правила гигиены:
- Соблюдение режима труда и отдыха, не допускающего развития утомления и переутомления.
- Выполнение условий, обеспечивающих здоровый и полноценный сон (свежий воздух, отсутствие шума, удобная постель, оптимальная продолжительность).
- Правильное здоровое питание в соответствии с потребностями организма.
- Комфортный микроклимат в жилище (температура, влажность и подвижность воздуха, естественная и искусственная освещенность помещений).
- Содержание в чистоте тела и тщательный уход за зубами.
- Спокойное и корректное поведение в конфликтных ситуациях.
Кроме вакцинации не стоит забывать о важных мерах предупреждения инфекционных болезней, таких как обеспечение безопасности воды, продовольственного сырья, продуктов питания, выполнение установленных санитарных требований в местах хранения и приготовления пищи, а также о строгом соблюдении правил личной гигиены (мытье рук, ношении масок и одноразовых перчаток на улице).
«Мы пытались рассказать Вам не только о существующих научных фактах о вирусах, но и показать, что определенные знания помогают нам в нынешней практической ситуации сохранить свое здоровье и здоровье своих близких. Мы понимаем, что сегодня коронавирус может находиться практически везде: на поверхностях любых предметов, в окружающей среде и т.д. Поэтому самоизоляция – это один из важнейших способов защиты от инфекции. Находясь дома, вы защищаете не только свое здоровье, но и помогаете медикам и ученым, которые сражаются с этим вирусов и день и ночь. Ведь, чем меньше шансов у нас с вами заболеть, тем больше шансов появляется у них, чтобы победить коронавирус. Пожалуйста, оставайтесь дома и соблюдайте режим самоизоляции и нормы гигиены».
Не только ВИЧ. Как устроены вирусы?
Галина Вирясова
Сайт СПИД.ЦЕНТР немало рассказывает своим читателям о вирусе иммунодефицита человека, но как устроены остальные вирусы? Чтобы помочь увидеть общую картину, наши авторы подготовили небольшой гид по вирусам с объяснением, как они работают, размножаются и как работают противовирусные лекарства.
Одни вирусы способны интегрироваться в геном клетки-мишени и таким образом оставаться во всех дочерних клетках, которые будут в будущем получены после ее деления. К таким вирусам относятся гаммаретровирусы и лентивирусы. Другие делать этого не умеют (например, адено- и аденоассоциированные вирусы). Но для производства белков и репликации (размножения) все они используют клетку и ее синтетический аппарат.
Несмотря на некоторую «несамостоятельность» в размножении, вирусы способны наследовать генетические мутации и подвержены эволюционному отбору. Выживает сильнейший, а в случае вируса — самый устойчивый и заразный.
Как это работает?
Для того чтобы вирус мог проникнуть в клетку, белки его оболочки должны связаться с мембранными белками клетки-мишени. Важно отметить, что проникает вирус только в те клетки, которые могут в дальнейшем помочь его репликации. Вирус ВИЧ живет в клетках иммунной системы, вирус гепатита С — в клетках печени. Есть особые вирусы, которые поражают только растения или даже только бактерии.
В целом у вирусов существуют разные стратегии доставки вирусного материала в клетку. Какие-то вирусы размножаются в ее цитоплазме, а какие-то — в ядре. Некоторые умеют «впрыскивать» свою генетическую информацию прямо через мембрану, когда сам капсид остается снаружи.
Объединяет их одно: после того как вирусная информация доставлена в клетку, та, «забывая» о своей изначальной функции, начинает заниматься в первую очередь репликацией вируса. Клетка производит матричную РНК (мРНК), с которой затем синтезируются вирусные белки и копируется геном, и сама собирает новую вирусную частицу.
В большинстве случаев вирус убивает клетку, чтобы выйти наружу и приступить к поиску новой «жертвы». Но иногда этого не происходит: некоторые вирусы, в том числе ВИЧ, могут отделяться от клетки, обзаведясь собственной оболочкой и оставив клетку в живых, чтобы та продолжила производить новые вирусные частицы.
Содержащие неактивный вирус и оставшиеся в живых клетки иногда сохраняют возможность нормального функционирования. В этом случае клетки могут быть заражены, но вирус проявит себя спустя длительный период времени. Так устроен герпес.
В зависимости от того, каким типом нуклеиновой кислоты представлен генетический материал, выделяют ДНК-содержащие вирусы и РНК-содержащие вирусы. И тут стоит остановиться на классификации.
Типы вирусов. Коротко о главном
Современная типология вирусов содержит 7 классов и была предложена Дэвидом Балтимором еще в 1971 году. С тех пор, впрочем, она была уточнена и расширена, в том числе советскими учеными. И выглядит в настоящее время таким образом:
- Класс I
Вирусы, содержащие двухцепочечную ДНК
Описание
Для репликации вирусу необходимо попасть в ядро клетки-мишени и воспользоваться ее ДНК-полимеразой. Иногда вирус вызывает незапланированное деление самое клетки, то есть становится онкогенным. Эти вирусы хорошо изучены.
Пример: Вирус герпеса, адено- и папилломавирусы
- Класс II
Вирусы, содержащие одноцепочечную ДНК
Описание
Попадая в ядро клетки, вирусы образуют двухцепочечную ДНК, после чего реплицируются так же, как вирусы класса I.
Пример: Парво- и цирковирусы
- Класс III
Вирусы, в которых РНК способна к репликации (редупликации)
Описание
Вирусы этого класса могут размножаться в цитоплазме клетки, им не нужна молекула ДНК. Каждый ген, находящийся в РНК вируса, кодирует только один вирусный белок.
Пример: Бирна- и реовирусы
- Класс IV
Вирусы, содержащие одноцепочечную (+) РНК
Описание
Из геномной (+) РНК на рибосомах хозяина создаются вирусные белки. В одном фрагменте РНК могут быть закодированы разные белки, что увеличивает сложность вируса без удлинения генов.
Пример: Пикорнавирусы (полиомиелит, гепатит А) и коронавирусы
- Класс V
Вирусы, содержащие одноцепочечную (–) РНК
Описание
(–) РНК этих вирусов предварительно должна быть транскрибирована в (+) РНК вирусными РНК-полимеразами, после чего может начаться синтез вирусных белков. Вирусы этого класса делятся еще на две группы, в зависимости от их генома и места его репликации (цитоплазма или ядро).
Пример: Филовирусы, аренавирусы (геморрагическая лихорадка Ласса), ортомиксовирусы (вирусы гриппа) и так далее.
- Класс VI
Вирусы, содержащие одноцепочечную (+) РНК, реплицирующиеся через стадию ДНК
Описание
Такие вирусы используют фермент обратную транскриптазу для превращения (+) РНК в ДНК, которая встраивается в геном хозяина ферментом интегразой. Дальнейшая репликация происходит при помощи полимераз клетки хозяина.
Пример: Ретровирусы (в том числе ВИЧ)
- Класс VII
Вирусы, содержащие двухцепочечную ДНК, реплицирующиеся через стадию одноцепочечной РНК
Описание
Молекула ДНК замкнута в кольцо и является матрицей для синтеза мРНК и дополнительных молекул РНК, которые используются при репликации вирусного генома обратными транскриптазами.
Пример: Колимовирусы (вызывают инфекции растений) и гепаднавирусы (например, гепатит В)
Вакцинация и лечение
Как правило, организмы умеют бороться с паразитирующими на них вирусами. На примере млекопитающих и человека мы обычно говорим о главном инструменте — врожденном иммунитете.
Впрочем, наиболее эффективен этот вид защиты в отношении бактериальных инфекций и не может обеспечить продолжительную и надежную защиту, особенно от инфекций вирусных.
Именно поэтому огромное значение имеет приобретенный иммунитет, в результате которого клетки иммунной системы обучаются вырабатывать специфические к вирусу антитела, способные уничтожать как саму вирусную частицу, так и зараженные ею клетки.
Еще одна врожденная система борьбы с вирусными инфекциями — внутриклеточная. Как правило, клетка способна распознать чужеродную РНК в своей цитоплазме, куда ее сперва и доставляют многие вирусы, и имеет специальные комплексы для ее деградации. Но часть вирусов научились обходить и эту ловушку. К примеру, ротавирусы, которые даже внутри клетки сохраняют капсид с геномной РНК.
С приобретенным иммунитетом тоже не все гладко. Некоторым вирусам, например, ВИЧ, удается избежать иммунного ответа. Другим, например нейротропным вирусам, — уклониться от него, выбрав безопасную среду обитания: они распространяются среди клеток нервной системы, где их не может «достать» иммунная система. Самый известный из таких вирусов — вирус бешенства, который способен проникать в нейроны.
Миссия: уничтожить
Основная сложность в лечении вирусных заболеваний заключается в том, что они используют естественные функции клеток-мишеней для своего размножения, поэтому ученым зачастую оказывается не так-то просто придумать препарат, который будет токсичен для вируса и безопасен для самой клетки. Если такой безопасности достичь не удастся, лекарство будет иметь слишком много побочных эффектов, повреждающих сам организм, что окажется нецелесообразно для использования.
По принципу действия противовирусные препараты подразделяются на две группы: стимулирующие иммунную систему атаковать вирусы (например, за счет индукции синтеза белков-интерферонов) и атакующие вирусы напрямую. Препараты второй группы различаются по этапу жизненного цикла вируса, на котором они активны: это препараты, препятствующие проникновению вируса в клетку, препятствующие размножению вируса внутри клетки и препятствующие выходу копий вируса из клетки.
Чтобы помешать проникновению вируса, препарат должен заблокировать рецептор на клетке, с которым связывается вирусная частица. Так работает, например, ибализумаб — зарегистрированный в США новый препарат против ВИЧ, о котором мы недавно писали.
Такие противовирусные препараты, как уже давно известный ацикловир (им лечат инфекции, вызванные простым вирусом герпеса) или ламивудин (активен против ВИЧ и гепатита В), представляют собой синтетические аналоги нуклеозидов — «букв», из которых состоят нуклеиновые кислоты. Если эти модифицированные, неправильные нуклеозиды попадают в клетку, вирусный геном, в который они оказались встроены, становится непригоден для дальнейшего распространения вируса.
Еще один класс противовирусных препаратов блокирует ферменты, необходимые для создания и модификаций белков вируса. Такие лекарства называют протеазными ингибиторами.
Вместо заключения: а могут ли вирусы приносить пользу?
Безусловно, да. Несмотря на то, что вирусы ассоциируются у большинства людей с однозначным вредом, они могут приносить и пользу — если речь идет о так называемых вирусных векторах и терапевтических подходах на их основе.
Исследователи давно научились помещать в белковую оболочку вируса интересующие их нуклеиновые кислоты, чтобы доставлять нужный ген в клетки, а также убирать те гены, которые делают вирус опасным для организма.
Это позволило сделать возможной генную терапию, помогающую бороться с заболеваниями, вызванными известными генетическими мутациями. Создание вирусных векторов — достаточно непростая задача, к тому же ограниченная свойствами самих вирусных частиц: количеством помещающейся генетической информации, местом ее вставки, стабильностью. Кроме того, вирусный вектор, используемый в медицине, не должен вызывать иммунного ответа или критично влиять на жизнедеятельность клетки. Тем не менее эти сложности решаются, поэтому уже одобрен ряд вполне успешных и безопасных генных терапий. А в качестве основы для вирусных векторов чаще всего используются ретро-, ленти-, адено- и аденоассоциированные вирусы.
Вирусы
Вирус (лат. virus – яд) – неклеточная форма жизни, мельчайшие болезнетворные микроорганизмы, не видимые в микроскоп. Они значительно меньше бактерий: легко проходят через бактериальные фильтры.
Вирусы способны размножаться только внутри живых клеток, до проникновения в них вирусы не имеют признаков жизни: пассивно перемещаются во внешней среде, ожидая встречи с клеткой-мишенью.
В 1892 году Ивановский Д.И. в ходе изучения мозаичной болезни табака обнаружил, что болезнь вызывается мельчайшими субстанциями, которые проходят через бактериальный фильтр, то есть были меньше бактерий. Вирусы впервые увидели в электронный микроскоп в 1939 году (спустя 19 лет со смерти Ивановского), однако считается, что именно Ивановский положил начало вирусологии как науке.
Вирусы выделяют в отдельное, пятое царство. Несмотря на их кажущуюся безжизненность, от неживой материи их отличают следующие черты:
- Наличие наследственности и изменчивости
- Способность к репродукции (воспроизведению себе подобных)
Рекомендую обратить особое внимание на черты, которые отличают вирусы от живых организмов:
-
Неживое (инертное) состояние
Вне клетки хозяина находятся в неживом состоянии, ожидая внедрения. Вирусы – облигатные внутриклеточные паразиты.
У вирусов отсутствует обмен веществ с внешней средой (метаболизм).
Не имеют клеточной мембраны, ограничивающих их от внешней среды, и, соответственно, клеточного строения.
Не делятся, не размножаются половым путем
У вирусов отсутствует половое размножение и деление. Попав в живую клетку, вирус встраивает свою нуклеиновую кислоту (РНК/ДНК) в наследственный материал клетки-мишени. В результате клетка начинает синтезировать вирусные белки (новые вирусы): так увеличивается численность вирусов.
Вирусы не растут, не увеличиваются в размерах. Стратегия их жизни – безудержное размножение.
Если мы заглянем в клетку, инфицированную вирусом, то от вируса мы увидим только один элемент – его нуклеиновую кислоту (ДНК/РНК). Во внешней среде вирусы существуют в виде вирионов – полностью сформированных вирусных частиц, состоящих из белковой оболочки (капсида) и нуклеиновой кислоты внутри.
Носителем наследственной информации у вирусов может быть ДНК, РНК. В связи с этим все вирусы подразделяются на ДНК- и РНК-содержащие.
Взаимодействие вируса с клеткой
Найдя клетку, на поверхности которой есть подходящий рецептор, вирус взаимодействует с ним и прикрепляется к мембране клетки. Путем эндоцитоза (образование вакуоли) вирус проникает внутрь клетки, выходит из вакуоли в цитоплазму. Наследственный материал (ДНК/РНК) вируса реализуется по схеме: ДНК ↔ РНК → белок.
Проникнув внутрь клетки (инфицировав ее), вирус реализует собственный генетический материал (ДНК/РНК) путем синтеза вирусного белка на рибосомах клетки хозяина. Клетка даже и не подозревает, что вирус встроил в ее РНК/ДНК свой генетический код – она принимает его как свой собственный, а в результате синтезирует вирусные белки.
Образовавшиеся белки объединяются в вирусные частицы, которые могут выходить из клетки разными путями. Вирионы вирусов гепатита C выходят из клетки путем почкования (экзоцитозом), при таком варианте клетка долгое время остается живой и служит для продукции новых вирионов.
Известен и другой механизм выхода вирионов из клетки: взрывной, при котором оболочка клетки разрывается, и тысячи вирионов отправляются инфицировать новые клетки. Такой способ характерен для аденовирусов, ротавирусов.
Бактериофаги (“бактерия” + греч. phag(os) — пожирающий)
Это уникальная группа вирусов, инфицирующая только бактерии. Бактериофаг имеет капсид, с содержащимся внутри наследственным материалом – ДНК (реже РНК), протеиновым хвостом. Бактериофаги открыты в 1915 году и с тех пор активно применяются в ходе генетических исследований.
Ниже вы можете видеть типичное строение бактериофага. Бактериофаг напоминает шприц, который протыкает стенку бактерии и впрыскивает внутрь нее свою нуклеиновую кислоту.
Бактериофаги успешно применяются в медицине для лечения многих заболеваний. Это высокоэффективные, дорогостоящие препараты, которые помогают, например, нормализовать микрофлору кишечника при бактериальных инфекциях.
Вирусные инфекции
Вирусы вызывают множество заболеваний человека и животных. Некоторые из них неизлечимы даже на современном этапе развития медицины, например бешенство. К вирусным инфекциям относятся грипп, корь, свинка, СПИД (вызванный ВИЧ), полиомиелит, желтая лихорадка, онковирусы.
Такая группа, как онковирусы, потенцируют развитие опухолей в организме. К ВИЧ и онкогенным вирусам не существует специфических антител, что затрудняет процесс создания вакцины. В то же время против ряда вирусных инфекций: корь, ветряная оспа созданы вакцины, создающие стойкий пожизненный иммунитет.
Клетки вырабатывают защитный белок – интерферон. Это вещество подавляет синтез новых вирусных частиц, приводит к повышению температуры тела (например, при гриппе).
Вирус иммунодефицита человека (ВИЧ) представляет для организма большую опасность. Он размножается в T-лимфоцитах – клетках крови, которые выполняют иммунную функцию. С гибелью T-лимфоцитов разрушается иммунная система, становится невозможным сопротивление организма бактериями, вирусам и грибам, что в отсутствии лечения приводит к вторичным инфекциям.
Риск заражения ВИЧ присутствует при гемотрансфузии (переливании крови), половом акте. Инфекция также может быть передана от ВИЧ инфицированной матери к плоду.
© Беллевич Юрий Сергеевич 2018-2021
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.
Особенности генетического аппарата вирусов. ДНК и РНК содержащие вирусы
Описание презентации по отдельным слайдам:
Описание слайда:
Кафедра молекулярной биологии и медицинской генетики
СРС
Особенности генетического аппарата вирусов. ДНК и РНК содержащие вирусы
Выполнил: Муратбеков Д.
Факультет: ОМФ
Группа: 109
Проверила: Оразалина А.С.
Семей – 2012 г.
Государственный медицинский университет г. Семей
Описание слайда:
Введение;
Природа генного аппарата вирусов;
Общий химический состав вирусов;
Белки вирусов;
ДНК – и РНК – содержащие вирусы;
Заключение.
Описание слайда:
Введение
Существует большая группа живых существ, не имеющих клеточного строения. Эти существа носят названия вирусов (лат “вирус” – яд) и представляют неклеточные формы жизни. Вирусы нельзя отнести ни к животным, ни к растениям. Они исключительно малы, поэтому могут быть изучены только с помощью электронного микроскопа.
Описание слайда:
Вирусы способны жить и развиваться только в клетках других организмов. Вне клеток живых организмов вирусы жить не могут, и многие из них во внешней среде имеют форму кристаллов. Поселяясь внутри клеток животных и
растений, вирусы вызывают
много опасных заболеваний.
К числу вирусных заболеваний
человека относятся, например,
корь, грипп, полиомиелит, оспа.
Среди вирусных болезней
растений известна мозаичная
болезнь табака, гороха и
других культур; У больных
растений вирусы разрушают
хлоропласты, и пораженные
участки становятся бесцветными.
Описание слайда:
Вирусы открыл русский ученый Д. И. Ивановский в 1892 г.
Каждая вирусная частица состоит из небольшого количества ДНК или РНК, т. е. генетического материла, заключенного в белковую оболочку. Эта оболочка играет защитную роль.
Известны также вирусы, поселяющиеся в клетках бактерий. Их называют бактериофагами или фагами (греч “фагос” – пожирающий).
Бактериофаги полностью
разрушают бактериальные
клетки и потому могут быть
использованы для лечения
бактериальных заболеваний,
например дизентерии,
брюшного тифа, холеры.
Строений вирусов дает основание
считать их неклеточными существами.
Описание слайда:
Природа генного аппарата вирусов
В 60-е годы, ознаменовавшиеся первыми успехами молекулярной биологии вирусов, начался и закат концепции о вирусах как организмах, и эти противоречивые процессы (триумф и закат) нашли свое отражение на 1-м Международном симпозиуме [Cold Spring Harbor, 1962]. Уже тогда одновременно с введением понятия “вирион” были показаны, с одной стороны, отличия их строения от строения клеток и даже был введен термин “архитектура” вирионов.
Описание слайда:
Природа генного аппарата вирусов
С другой стороны, были обобщены факты, указывавшие на совершенно отличный от клеток тип размножения, который некоторое время называли дизъюнктивной репродукцией, подчеркивая разобщенность — временную и территориальную — синтеза генетического материала (РНК, ДНК) и белков вирусов. В докладе на упоминавшемся симпозиуме был также сформулирован основной критерий отличия вирусов от других организмов: генетический материал вирусов является одним из двух типов нуклеиновых кислот (РНК или ДНК), в то время как организмы имеют оба типа нуклеиновых кислот.
Описание слайда:
Природа генного аппарата вирусов
Вирусы являются автономными генетическими структурами, способными функционировать только в клетках, с разной степенью зависимости от клеточных систем синтеза нуклеиновых кислот и полной зависимостью от клеточных белоксинтезирующих и энергетических систем, подвергающихся самостоятельной эволюции. Если рассматривать вирусы в плане паразитологии, то их паразитирование следует признать не только внутриклеточным (как это имеет место у риккетсий и хламидий), а паразитизмом генетическим, так как взаимодействие вируса с клеткой является,
прежде всего,
взаимодействием
двух геномов —
вирусного и клеточного.
Описание слайда:
Общий химический состав вирусов
Непременным компонентом вирусной частицы является какая-либо одна из двух нуклеиновых кислот, белок и зольные элементы. Эти три компонента являются общими для всех без исключения вирусов, тогда как остальные два липоиды и углеводы – входят в состав далеко не всех вирусов.
Вирусы, состоящие только из белка нуклеиновой кислоты и зольных элементов, чаще всего принадлежат к группе простых, так называемых минимальных, вирусов, лишенных дифференциации, собственных ферментов или каких-либо специализированных структур. К такого рода вирусам принадлежат вирусы растений, некоторые вирусы животных и насекомых.
Описание слайда:
Общий химический состав вирусов
В то же время практически все бактериофаги, которые по химическому составу, безусловно принадлежат к группе минимальных вирусов, на самом деле являются очень сложными и высокодифференцированными структурами. Вирусы, в состав которых наряду с белком и нуклеиновой кислотой входят также липоиды и углеводы, как правило, принадлежат к группе сложно устроенных вирусов. Большая часть вирусов этой группы паразитирует на животных.
Описание слайда:
Аминокислотный состав вирусных белков
Белок всех исследованных до настоящего времени вирусов построен из обычных аминокислот, принадлежащих к естественному L-ряду. D-аминокислот в составе вирусных частиц не найдено. Соотношение аминокислот в вирусных белках достаточно близко к таковому в белках животных, бактерий и растений.
Описание слайда:
Вирусные белки не содержат обычно большого количества основных аминокислот
(аргинина, муцина), т.е. не принадлежат к группе белков типа гистонов и протаминов с ярко выраженными щелочными свойствами. Не учитывая нейтральных аминокислот, можно сказать, что в вирусном белке преобладают кислые дикарбоновые кислоты. Это справедливо как для вирусов с низким содержанием нуклеиновой кислоты, так и для вирусов с высоким содержанием РНК и ДНК.
Описание слайда:
ДНК- и РНК-содержащие вирусы
ДНК-содержащие вирусы разделяются на следующие 5 классов.
1. Полиомавирусы
2. Папилломавирусы
3. Аденовирусы
4. Герповирусы
5. Вирусы, подобные вирусу гепатита В
Описание слайда:
ДНК- и РНК-содержащие вирусы
1. Полиомавирусы – обезьяний вирус SV40, вирус полиомы мышей и вирусы человека ВК и JC.
2. Папилломавирусы – 16 вирусов папилломы человека и множество папилломовирусов животных.
3. Аденовирусы – 37 вирусов человека, множество аденовирусов животных (например, 24 вируса обезьян и 9 вирусов крупного рогатого скота).
4. Герповирусы – вирусы простого герпеса человека, цитомегаловирус человека, вирус Эпштейна– Барр и онкогенные вирусы приматов, лошадей, кур, кроликов, лягушек.
5. Вирусы, подобные вирусу гепатита В, – вирус гепатита В человека, гепатита североамериканского сурка, гепатита земляных белок и гепатита уток.
Описание слайда:
РНК-содержащие опухолеродные вирусы разделяются на 4 класса.
1. Вирусы типа С
2. Вирусы типа В
3. Вирусы типа А.
4. Вирусы типа D
Описание слайда:
РНК-содержащие опухолеродные вирусы разделяются на 4 класса.
1. Вирусы типа С – возбудители лейкозов и сарком.
2. Вирусы типа В – вирус рака молочных желез мышей.
3. Вирусы типа А.
4. Вирусы типа D – вирус, выделенный при раке молочных желез обезьян резус, и вирус, выделенный из перевиваемых клеток человека.
Описание слайда:
Заключение
Вирусы играют большую роль в жизни человека. Они являются возбудителями ряда опасных заболеваний – оспы, гепатита, энцефалита, краснухи, кори, бешенства, гриппа и др.
Вирусы, размножаются только в клетках, это внутриклеточные паразиты. В свободном, активном состоянии они не встречаются и не способны размножаться вне клетки. Если у всех клеточных организмов обязательно имеются две нуклеиновые кислоты – ДНК и РНК, то вирусы содержат только одну из них. На этом основании все вирусы делятся на две большие группы: ДНК, – содержащие и РНК – содержащие.
В отличие от клеточных организмов у вирусов отсутствует собственная система, синтезирующая белки. Вирусы вносят в клетку только свою генетическую информацию. С матрицы – вирусной ДНК или РНК – синтезируется матричная (информационная) РНК, которая и служит основой для синтеза вирусных белков рибосомами инфицированной клетки. Молекула ДНК вирусов, или их геном, может встраиваться в геном клетки – хозяина и существовать в таком виде неопределённо долгое время. Таким образом, паразитизм вирусов носит особый характер – это паразитизм на генетическом уровне.
Описание слайда:
Вирусология. Под редакцией Филдса Б., Найта Д., тт. 1–3, М., 1989
http://www.fos.ru/medicine
http://bio.1september.ru
http://www.bestreferat.ru
Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.
Источники:
http://rosuchebnik.ru/material/virusy-chto-my-znaem-o-virusakh-i-metodakh-zashchity-ot-nikh/
http://spid.center/ru/articles/2569/
http://studarium.ru/article/141
http://infourok.ru/osobennosti-geneticheskogo-apparata-virusov-dnk-i-rnk-soderzhashie-virusy-4753199.html