Где происходит два первых этапа клеточного дыхания, чем дышит клетка?

Химия, Биология, подготовка к ГИА и ЕГЭ

Клеточное или тканевое дыхание — совокупность биохимических реакций, протекающих в клетках живых организмов, в ходе которых происходит окисление углеводов, липидов и аминокислот до углекислого газа и воды.

Итак, клеточное дыхание происходит в клетке.

Но где именно? Какая органелла осуществляет этот процесс?

Основной этап клеточного дыхания осуществляется в митохондриях. Как известно, основной продукт работы митохондрии — молекулы АТФ — синоним понятия «энергия» в биологии. Действительно, основным продуктом этого процесса является энергия, молекулы АТФ.

АТФ — это молекула — синоним энергии в биологии. Расшифровывется как Аденозинтрифосфат или Аденозинтрифосфорная кислота. Как видно из рисунка формулы, в составе молекулы есть:

  1. три связи с остатками фосфорной кислоты, при разрыве которых выделяется большое количество энергии,
  2. углевод рибоза ( пятиатомый сахар) и
  3. азотистое основание

Этапы клеточного дыхания:

1 Этап клеточного дыхания — подготовительный

Каким образом вещества попадают в клетки? В процессе пищеварения организма. Суть процесса пищеварения — расщепление полимеров, поступающих в организм с пищей, до мономеров:

  • белки расщепляются до аминокислот;
  • углеводы — до глюкозы;
  • жиры расщепляются до глицерина и жирных кислот.

Т.е. в клетку поступают уже мономеры.

Дальше мы рассмотрим путь превращения именно глюкозы .

2 Этап клеточного пищеварения

Гликолиз — ферментативный процесс последовательного расщепления глюкозы в клетках, сопровождающийся синтезом АТФ.

Гликолиз при аэробных условиях ведёт к образованию пировиноградной кислоты (ПВК) (пирувата),

гликолиз в анаэробных условиях (бескислородных или при недостатке кислорода) ведёт к образованию молочной кислоты (лактата).

Процесс идет с участием молекул фосфорной кислоты, поэтому называется окислительное фосфорилирование

Гликолиз является основным путём катаболизма глюкозы в организме животных.

Превращения происходят в цитоплазме клетки, т.е. процесс будет однозначно анаэробным: молекула глюкозы расщепится до ПВК — пировиноградной кислоты с выделением 2 молекул АТФ:

Дальше образовавшаяся пировиноградная кислота поступает в митохондрии, где происходит ее дальнейшее окисление

3 Этап клеточного пищеварения (кислородный)

Поступая в митохондрию, происходит окисление: ПВК под действием кислорода расщепляется до углекислого газа (суммарное уравнение):

Вначале отщепляется один углеродный атом пировиноградной кислоты. При этом образуется углекислый газ, энергия (она запасается в одной молекуле НАДФ) и двухуглеродная молекула — ацетильная группа. Затем реакционная цепь поступает в метаболический координационный центр клетки — цикл Кребса.

Цикл Кребса

Читать еще:  Лук бамбергер описание сорта фото отзывы

(цикл лимонной кислоты)

Цикл Кребса — это реакции, которые начинаются, когда определенная входящая молекула соединяется с другой молекулой, выполняющей функцию «помощника». Такая комбинация инициирует серию других химических реакций, в которых образуются молекулы-продукты и в конце воссоздается молекула-помощник, которая может начать весь процесс вновь.

Для переработки энергии, запасенной в одной молекуле глюкозы, цикл Кребса нужно пройти дважды

Процесс многостадийный, и в нем, помимо различных кислот с интересными названиями участвуют коферменты (КоА).

Что такое коферменты?

  • это органические вещества небольшого размера
  • они способны соединяться с белками ( или прямо с ферментами, у которых, кстати, белковая природа), образуя активное вещество, косплекс, которое будет являться чем-то вроде катализатора.

Приставка «ко-» — это как «со-» — сопродюсер, соотечественник и т.п. Т.е. «вместе, с «

Гликолиз — катаболический путь исключительной важности.

Он обеспечивает энергией клеточные реакции, в том числе и синтез белка.

Промежуточные продукты гликолиза используются при синтезе жиров.

Пируват также может быть использован для синтеза других соединений. Благодаря гликолизу производительность митохондрий и доступность кислорода не ограничивают мощность мышц при кратковременных предельных нагрузках.

Процесс клеточное дыхание его этапы кратко (Таблица)

Клеточное дыхание — это окислительный, с участием кислорода, распад органических питательных веществ, сопровождающийся образованием химически активных метаболитов и освобождением энергии, которые используются клетками для процессов жизнедеятельности.

Общее уравнение процесса дыхания имеет следующий вид:

где Q = 2878 кДж/моль.

Схема процесс клеточное дыхание

Дыхание — процесс многоступенчатый, в нем выделяют две основные стадии: гликолиз и кислородный этап (состоит из 3х подэтапов).

Таблица клеточное дыхание этапы

ATP (АТФ) — это аденозинтрифосфорная кислота, универсальный источник и переносчик энергии

NAD (НАД) — никотинамидадениндинуклеотидфосфата, кофермент

Ацетил-КоА — сложное органическое вещество ацетил-коэнзим А (СН3СО—S)

Пируват — это соли пировиноградной кислоты

Этапы клеточного дыхания

Первый этап: процесс гликолиза

Процесс гликолиза сложный и состоит примерно из десяти этапов. Глюкоза расщепляется («лизируется») на две молекулы пирувата. При этом образуются две молекулы АТР и две молекулы восстановленного кофермента. Эта стадия может протекать анаэробно, в анаэробных условиях (без кислорода или его недостатке) в результате гликолиза образуется молочная кислота (лактат), его еще называют брожение.

Читать еще:  Продолжительность карантина после прививки у собак

Второй этап: превращение пирувата в ацетил-КоА

Превращение пирувата в ацетил-КоА под действием пируватдегидрогеназного комплекса и направляет молекулу пирувата в цикл Кребса. Образуются две молекулы восстановленного кофермента. У эукариот процесс протекает в матриксе митохондрий.

Третий этап: цикл Кребса (цикл трикарбоновых кислот)

Цикл Кребса (трикарбоновых кислот или лимонной кислоты) представляет собой серию окислительных реакций. На каждом витке цикла образуется одна молекула АТР и четыре молекулы восстановленного кофермента. (На каждую молекулу глюкозы приходится два «оборота» цикла.) Это аэробная стадия.

Ацетил-КоА + 3NAD + + PAD + GDP + Фн + 2H2O + КоА-SH = 2КоА-SH + 3NADH + 3H + + PADН2 + GTP + 2CO2 (общее суммарное уравнение цикла)

Четвертый этап: окислительное фосфорилирование

Основное количество молекул АТP вырабатывается на этом этапе. Генерируется градиент протонов и его электрохимический потенциал используется для синтеза 32 молекул АТР. Аэробная стадия.

Кислород — это конечный акцептор восстановительного потенциала, возникающего при окислении органических молекул.

_______________

Источник информации:

1. Биология человека в диаграммах / В.Р. Пикеринг — 2003.

2. Биология для поступающих в вузы / Г.Л. Билич, В.А. Крыжановский. — 2008.

Клеточное дыхание

Клеточное дыхание — это окисление органических веществ в клетке, в результате которого синтезируются молекулы АТФ. Исходным сырьем (субстратом) обычно служат углеводы, реже жиры и еще реже белки. Наибольшее количество молекул АТФ дает окисление кислородом, меньшее – окисление другими веществами и переносом электронов.

Углеводы, или полисахариды, перед использованием в качестве субстрата клеточного дыхания распадаются до моносахаридов. Так у растений крахмал, а у животных гликоген гидролизуются до глюкозы.

Глюкоза является основным источником энергии почти для всех клеток живых организмов.

Первый этап окисления глюкозы — гликолиз. Он не требует кислорода и характерен как при анаэробном, так и аэробном дыхании.

Биологическое окисление

Клеточное дыхание включает в себя множество окислительно-восстановительных реакций, в которых происходит перемещение водорода и электронов от одних соединений (или атомов) к другим. При потери электрона каким-либо атомом происходит его окисление; при присоединении электрона — восстановление. Окисляемое вещество — это донор, а восстанавливаемое — акцептор водорода и электронов. Окислительно-восстановительные реакции, протекающие в живых организмах носят название биологического окисления, или клеточного дыхания.

Обычно при окислительных реакциях происходит выделение энергии. Причина этого кроется в физических законах. Электроны в окисляемых органических молекулах находятся на более высоком энергетическом уровне, чем в продуктах реакции. Электроны, переходя с более высокого на более низкий энергетический уровень, высвобождают энергию. Клетка умеет фиксировать ее в связях молекул АТФ — универсальном «топливе» живого.

Читать еще:  Кот носится как ненормальный по квартире: почему кошка бегает?

Наиболее распространенным в природе конечным акцептором электронов является кислород, который восстанавливается. При аэробном дыхании в результате полного окисления органических веществ образуются углекислый газ и вода.

Биологическое окисление протекает по-этапно, в нем участвуют множество ферментов и соединения, переносящие электроны. При ступенчатом окислении электроны перемещаются по цепи переносчиков. На определенных этапах цепи происходит выделение порции энергии, достаточной для синтеза АТФ из АДФ и фосфорной кислоты.

Биологическое окисление весьма эффективно по-сравнению с различными двигателями. Около половины выделяющейся энергии в конечном итоге фиксируется в макроэргических связях АТФ. Другая часть энергии рассеивается в виде тепла. Поскольку процесс окисления ступенчатый, то тепловая энергия выделяется понемногу и не повреждает клетки. В то же время она служит для поддержания постоянной температуры тела.

Аэробное дыхание

Различные этапы клеточного дыхания у аэробных эукариот происходят

в матриксе митохондрий – цикл Кребса, или цикл трикарбоновых кислот,

на внутренней мембране митохондрий – окислительное фосфорилирование, или дыхательная цепь.

На каждом из этих этапов из АДФ синтезируется АТФ, больше всего на последнем. Кислород в качестве окислителя используется только на этапе окислительного фосфорилирования.

Суммарные реакции аэробного дыхания выглядит следующим образом.

Дыхательная цепь: 12H2 + 6O2 → 12H2O + 34АТФ

Таким образом биологическое окисление одной молекулы глюкозы дает 38 молекул АТФ. На самом деле нередко бывает меньше.

Анаэробное дыхание

Большинство анаэробов — это микроорганизмы. Однако к организмам, использующим анаэробное дыхание, относятся также дрожжи, ряд червей-паразитов. Способностью к анаэробному дыханию также обладают определенные ткани. Например, мышечные клетки, которые периодически могут испытывать недостаток кислорода.

При анаэробном дыхании в окислительных реакциях акцептор водорода НАД не передает водород в конечном итоге на кислород, которого в данном случае нет.

В качестве акцептора водорода может быть использована пировиноградная кислота, образующаяся при гликолизе.

У дрожжей пируват сбраживается до этанола (спиртовое брожение). При этом в процессе реакций образуется также углекислый газ и используется НАД:

CH3COCOOH (пируват) → CH3CHO (ацетальдегид) + CO2

Молочнокислое брожение происходит в животных клетках, испытывающих временный недостаток кислорода, и у ряда бактерий:

CH3COCOOH + НАД · H2 → CH3CHOHCOOH (молочная кислота) + НАД

Оба брожения не дают выхода АТФ. Энергию в данном случае дает только гликолиз, и составляет она всего две молекулы АТФ. Значительная часть энергии глюкозы так и не извлекается. Поэтому анаэробное дыхание считается малоэффективным.

Источники:

http://distant-lessons.ru/etapy-kletochnogo-dyxaniya.html

http://infotables.ru/biologiya/81-biokhimiya/1044-protsess-kletochnoe-dykhanie

http://biology.su/molecular/cellular-respiration

Ссылка на основную публикацию
Статьи на тему:

Adblock
detector